
PHYSICAL REVIEW E 67, 056111 ~2003!
Time-reversed dielectric-breakdown model for erosion phenomena
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A time-reversed dielectric-breakdown model in which the annihilating probability of a particle on the surface
site (x,h) depends on Laplacian fieldf(x,h,t) as P(x,h,t)5u“f(x,h,t)uk/(x,hu“f(x,h,t)uk is suggested.
This model is shown to be a theoretical model that covers a variety of eroding surfaces from the linear
phenomena with dynamic exponentz51 to those showing nonlinear behavior.f(x,t) is defined to satisfy the
Laplace equation¹2f50 with the boundary conditionf50 on the material andf51 far from the material.
The model with 0.5&k&2 is found to follow the linear growth equation withz51 as the diffusion-limited
erosion, which is also a time-reversed version of diffusion-limited deposition. For smallk, the dynamical
scaling property of the eroding surface belongs to the Kardar-Parisi-Zhang universal class as the time-reversed
Eden model. The model withk.2.5 does not show any surface roughening behavior.
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I. INTRODUCTION

It is important to understand the dynamics of the surfa
eroded by reactions of particles from outside with particles
the material, because such evolution can be the key pro
for diverse phenomena such as electrolytic polishing, co
sion, etching, stable fluid invasion@1–5#, chemical processe
mediated by a catalytic particle@6,7#, etc. Even though vari-
ous theoretical scenarios@3,8# for growing surfaces such a
the Kardar-Parisi-Zhang~KPZ! equation@9#, conserved KPZ
equation@10–13#, linear growth equation@14#, and growth
models with quenched disorder@15–17# can be used to ana
lyze eroding surfaces such as etched Si surfaces@5#, these
models were suggested mainly for growing or standing s
faces. Since the erosion processes are not merely the t
reversed processes of growth and the eroding surfaces ca
simply be understood from the models for growing surfac
comprehensive models for the eroding surfaces are nee
However, there have been only a few theoretical mod
@2,3,6# suggested solely for such eroding surfaces. Amo
them, one of the most important models is the diffusio
limited erosion~DLE!, which is the time-reversed process
the diffusion-limited deposition~DLD! @18#.

DLE has been proved to follow the linear evolution equ
tion @2,3#

]hq~ t !

]t
52nuquhq~ t !1hq~ t !, ~1!

]h~x,t !

]t
5nu¹2u1/2h~x,t !1h~x,t !, ~2!

where hq(t) is the Fourier component of surface heig
h(x,t), and hq(t) is the Fourier component of Gaussia
white noise h(x,t) with ^hq(t)&50 and ^hq(t)hq8(t)&
5Ddqq8d(t2t8). In DLE a particle starting far from the
material undergoes a random walk before it touches the
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terial. In DLE, both the incoming particle and the mater
particle, which the incoming particle first encounters, disa
pear through a reaction. This random walking prope
makes the incoming particle have more chance to contac
protruded part of the surface than the flat part. This non
cality from the random-walk-like noise makes the fluctuati
of surface follow Eq.~1! and make DLE a good model fo
the stable Laplacian front and for other eroding surfaces@2#.

Although DLE is a good model for a sort of eroding su
faces, it is restricted to the limited applicability. If the incom
ing particle is attractively biased to the material, the erod
surface follows ballistic erosion@19#, which is based on a
local theory. Furthermore real eroding surfaces can h
various nonlinear or hydrodynamic effects@2,3#. In this
work, we want to suggest an extensive and powerful mo
as a paradigm for the evolution of eroding surfaces. As
shall see, our model explains not only the nonlocal erod
phenomena as DLE, but also the local or nonlinear KPZ-ty
eroding phenomena by a unified scheme.

We now want to briefly explain the theoretical bac
ground of our model. The space-time dependence of the d
sity f(x,t) of the random walkers in DLE or DLD follows
the diffusion equation]f/]t5D¹2f. In DLD the number
of random walkers is always 1, because a new rand
walker is assumed to start only after the preceding wal
sticks to the cluster. The growth process is thus very s
and the density of walkers at any time is very low, so that
growing process is nearly close to a steady state. From
fact the density fieldf(x,t) of the walkers is expected to
satisfy the Laplace equation

¹2f50, ~3!

with the following boundary condition:f51 at the starting
place of a walker andf(x,t)50 on the cluster. This obser
vation explains why the dielectric-breakdown model~DBM!
@20# with a tuned parameter makes nearly the same rami
cluster as the DLD cluster. In DBM the Laplace equation~3!
with the specified boundary condition is first numerica
solved. Then the selection probability of a growth site
©2003 The American Physical Society11-1
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assigned to be proportional tou¹fuk, whereu¹fu is propor-
tional to the particle flux to the site. Next choose a grow
site based on the probability assignment and make the
belong to the cluster. The exponentk in DBM was intro-
duced to describe the relation between the local field and
growth probability. The structure of clusters as well as
fractal dimensiondf of the DBM model withk51 has been
shown to be nearly the same as that of DLD. However, DB
is more powerful than DLD because of the physically imp
tant parameterk. k is a relevant parameter from the point
view thatdf varies ask varies. From this fact DBM can be
model for a more wider class of the growth processes.
case withk50 corresponds to the case in which the grow
probability is independent off and is equal to a type o
Eden model@21# with df52. A similar growth mechanism
based on the gradient of density field was also used to
scribe dendrite growing problems@22#.

In this work we want to suggest a paradigm for the ev
lution of eroding surfaces based on the time-reversed
cesses of DBM. DLE@2# was also a time-reversed process
DLD @18#. However, DLE was not a marginal extension
DLD but a decisive model for a sort of the eroding surfac
We also want to show that TDBM is not a marginal exte
sion of DBM but the model for the wider variety of erodin
surfaces than DLE. Even though DLE was shown to b
model for the stable Laplacian front, TDBM withk51 is a
more clear model that faithfully reproduces the circumsta
for the derivation that the dynamical behavior of the sta
Laplacian front follows Eq.~1!. Furthermore, TDBM also
covers a variety of the erosion processes including two
treme time-reversed random and irreversible growth mod
i.e., the time-reversed Eden model and the time-rever
DLD ~DLE! in a systematic and unified way. The unifie
way is by the variation of parameterk, ask in DBM makes
the model cover from the needle crystal to the Eden mo
@20#. TDBM is a kind of the surface evolution model wit
both the deterministic and stochastic characters, becaus
the numerical solution of the Laplace equation. TDBM
also a nonlocal evolution model because of the Lapl
equation. However, TDBM can also have the local nonl
earity by the variation of the parameterk. For smallk, the
model shows the nonlinear effects, so that it follows the n
linear equation such as the KPZ equation@8,9#. This nonlin-
earity could also be related to the nonlinear effects from
relatively large attractive bias for the incoming particles
DLE @2#.

II. MODEL

We now explain TDBM on a two-dimensional~2D!
square lattice in detail. TDBM on a higher-dimensional h
percubic lattice can easily be obtained from the 2D defi
tion. The evolution algorithm in TDBM has the followin
three steps~see Fig. 1!.

~i! Setf(x,y,t)50 at the sites occupied by the mater
particles and setf(x,y5hmax1yb ,t)51, wherehmax is the
maximal surface height andyb is a preassigned distance. Th
periodic boundary condition is imposed in the lateral dire
tion.
05611
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~ii ! Solve the Laplace equation¹2f50 numerically with
the boundary condition defined in step~i!. ¹2f50 is solved
by the Gauss-Seidel over-relaxation method using the
lowing lattice version of the Laplace equation:

fk11~x,y!5fk~x,y!1vF1

4
$fk~x21,y!1fk~x11,y!

1fk~x,y21!1fk~x,y11!%2fk~x,y!G ,
~4!

wherev is an over-relaxation parameter.
~iii ! Using the numerical solution forf(x,y) from step

~ii !, the annihilation probabilityP„x,h(x,t)… of a particle at a
surface site„x,h(x,t)… is determined by

P„x,h~x,t !…5
u“f~x,h,t !uk

(
x,h

u“f~x,h,t !uk
. ~5!

Based on probability assignment~5!, a surface site is chosen
Annihilate the particle at the chosen site. Then go back
step~i!.

The numerical calculations start from the flat surfa
h(x,t50)5ys . We setyb>20. All the data forW are ob-
tained by averaging over more than 100 independent ru
where W is the root mean square fluctuations of surfa
heights$h(x,t)%.

III. RESULTS

We first discuss results for TDBM withk51. The depen-
dence ofW for k51 on the Monte Carlo timet is shown in
the inset of Fig. 2. Lateral sizes of the sample wereL
532,64,128,256,512,1024. Solid curves in the inset sh
that eachW(L,t) fits very well to the analytic result from the
linear equation~1! @2,3#,

W25W`
2 1CH lnF12expS 24pnt

L D G J 5W`
2 1 f ~ t/L !,

~6!

FIG. 1. The schematic diagram for the unit evolution process
the time-reversed dielectric-breakdown model in a 2D lattice. T
shaded sites denote the surface sites for annihilation. Fieldf(x,y,t)
is assigned asf(x,y,t)50 on the occupied sites andf(x,hmax

1yb ,t)51 on the liney5hmax1yb . At the sites between the oc
cupied sites andy5hmax1yb , ¹2f(x,y,t)50 holds. The annihi-
lating probability of a surface site is determined by Eq.~5!.
1-2
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whereW`5W(L,t5`) andC is a constant. The main plo
of Fig. 2 showsW(L,t) for variousL andt collapses well to
one curve that represents the scaling plot based on Eq.~6!.
Normally the dynamic exponentz is defined through the re
lation tc.Lz, wheretc is the characteristic time or relaxatio
time tc of the given dynamical behavior. Therefore, the
sults in Fig. 2 show that the dynamical behavior fork51 is
that with z51. The results in Fig. 2 also mean that TDB
with k51 follows Eq. ~1! very well as DLE. This also
means that the dynamic scaling property of DLE is the sa
as that of TDBM withk51 as the property of DLD is the
same as that of DBM.

For the relevancy test of parameterk, we also study
TDBM with kÞ1. We first show for what values ofk W still
follows Eq. ~6! or the model follows Eq.~1!. In Fig. 3,W in
casesk50.5 andk52.0 is shown to satisfy the scaling prop
erty ~6! well. As may be noticed from Fig. 3, it is confirme
that W of the model with the range 0.5&k&2 satisfies the
scaling property~6! well. This means that the nonlocality o
the Laplace equation~3! is still dominant for 0.5&k&2 and
TDBM has the same scaling property as that withk51.

Another interesting case is in the limitk→0. Whenk
50, the annihilating probabilities on the surface sites
come independent of fieldf(x,t). This case becomes th
time-reversed process of an Eden model@8,21#. The time-
reversed Eden~TR-Eden! model ~i.e., TDBM with k50) is
exactly identical to the original Eden model if all the occ
pied ~vacant! sites in the TR-Eden model are mapped to
vacant ~occupied! sites. We thus expect thatW for k50
satisfies the usual scaling relation

W5La f ~ t/Lz! ~7!

with the KPZ exponents, i.e., roughness exponenta51/2,
growth exponentb51/3, and dynamic exponentz5a/b

FIG. 2. Plot of W2 of TDBM with k51 for the samples of
various lateral sizes (L ’s!. The inset shows the plot of the raw da
of W2 against log10t and the solid curves in the inset show thatW2

for the differentL satisfies relation~6! well. The main plot shows
that the plot ofW22W`

2 for the differentL against log10(t/L) col-
lapses well to one curve based on the scaling relation~6! with
z51.
05611
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53/2 on a 1D substrate@8#. We confirm this expectation
numerically. This result physically means thatk in TDBM
can induce a nonlinear term such as the KPZ termu¹hu2 if k
becomes small. To see the range ofk in which KPZ behavior
is dominant, we study TDBM with smallk. We display the
scaling behavior of TDBM withk50.01 in Fig. 4, in which
we can clearly see the KPZ behavior witha50.48 and ex-
ponentb50.33. However, we find thatW does not show the
KPZ behavior fork.0.02. For 0.03&k&0.4 we confirm
thatW shows the dynamic scaling behavior as in Eq.~7!, but
exponentsa andb decrease from KPZ values ask increases.
The typical algebraic behavior of the model with 0.03&k
&0.4 is that shown in Fig. 5. In Fig. 5 we show that th
dynamical behavior of the model withk50.1 satisfies the
same scaling behavior as in Eq.~7! with a50.3 and b

FIG. 3. Plot of W22W`
2 for the different L in the casesk

50.5 andk52.0 ~inset!. The plot showsW2 for both cases col-
lapses well to one curve based on the scaling relation~6! with z
51 as in Fig. 2.

FIG. 4. The dynamical behavior of TDBM withk50.01 ~or
very smallk). The main plot shows the early time behavior ofW or
W for t!Lz. The solid line shows that the data fit well to th
relationW.tb(b50.33). The inset shows thatW in the saturation
regime~or t@Lz) satisfies the relationW.La(a50.48) well. This
result shows that TDBM with a very smallk has the KPZ nonlin-
earity as the TR-Eden model whenk50.
1-3
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50.18. The results in Figs. 4 and 5 mean that TDBM w
k&0.4 shows the scaling behavior as in Eq.~7! with varying
a andb unlessk becomes very small ork&0.02.

If k→`, we can expect that the nonlocality of th
Laplace equation makes the annihilating probability at
protruded part of the surface enormously large and the
face becomes unroughened. We confirm that models witk
.2.5 do not show any roughening behavior.

IV. SUMMARY AND DISCUSSION

In summary we have introduced a dynamical model
the eroding surfaces based on the nonlocality of the Lap
equation. This model naturally explains the dynamic scal
behavior of the so-called Laplacian front whenk51. Fur-

FIG. 5. The dynamical behavior of TDBM withk50.1. The
main plot shows the early time behavior ofW or W for t!Lz. The
solid line shows that the data fit well to the relationW.tb(b
50.18). The inset shows thatW in the saturation regime~or t
@Lz) satisfies the relationW.La(a50.30) well. This result shows
that the scaling behavior of TDBM with a moderately smallk is the
same as Eq.~7!, but the values ofa andb decrease from the KPZ
values ask increases.
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thermore the scaling behavior withz51 exists in the rather
broad range ofk, 0.5&k&2, where the nonlocality of the
Laplace equation is still the important factor to decide t
scaling property of TDBM. For smallk ~or k&0.4), W
shows the normal dynamical scaling behavior as in Eq.~7!
with varyinga andz. For the KPZ-like nonlinear behavior a
in the TR-Eden model withk50, k must become very smal
~or k&0.02). For the models with largek ~or k.2.5), the
surface shows no roughening behavior.

We now want to add two final comments. One is on t
crossover behavior from a regime to another whenk varies.
The crossover behaviors we found are not sharp, but br
Because we did not analyze the finite size effects usin
sound theory, we cannot argue that the broad crosso
comes from either the intrinsic character of the model or
finite size effects. This is partly due to the relatively lon
computing time to solve the Laplace equation. In the origi
DBM model @20# the existence of the several regimes of t
model was shown, but the crossover behavior was not
cussed, either. The reason for that is also believed to c
from the same computing time problem.

The second comment is on the KPZ nonlinearity. As d
cussed previously, nonlinearity becomes important whenk
becomes very small or the nonlocal behavior of the mo
becomes smeared out. Another way to make such local
is to give the incoming particle a drift velocity to the materi
in DLE or to make the particle undergo ballistic motio
According to a theoretical analysis@2# for the drift velocity
effects on the Laplacian front, the bias can make the K
nonlinearity. In contrast, the scaling behavior of the erod
surface was shown to follow the Edwards-Wilkinson beha
ior with z52 @8,23# when the incoming particle in DLE
undergoes a biased random walk to the material@19#. It may
be thus very interesting to study the algebraic behavior
TDBM more exactly in future studies.
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