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Time-reversed dielectric-breakdown model for erosion phenomena
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Atime-reversed dielectric-breakdown model in which the annihilating probability of a particle on the surface
site (x,h) depends on Laplacian field(x,h,t) asP(x,h,t) =]V ¢(x,h,t)|“/=, |V ¢(x,h,t)|* is suggested.
This model is shown to be a theoretical model that covers a variety of eroding surfaces from the linear
phenomena with dynamic exponerit 1 to those showing nonlinear behavidgi(x,t) is defined to satisfy the
Laplace equatioiv2¢=0 with the boundary conditiogp=0 on the material anep=1 far from the material.
The model with 0.5 k=<2 is found to follow the linear growth equation witt+1 as the diffusion-limited
erosion, which is also a time-reversed version of diffusion-limited deposition. For smahe dynamical
scaling property of the eroding surface belongs to the Kardar-Parisi-Zhang universal class as the time-reversed
Eden model. The model witk>2.5 does not show any surface roughening behavior.
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[. INTRODUCTION terial. In DLE, both the incoming particle and the material
particle, which the incoming particle first encounters, disap-
It is important to understand the dynamics of the surfacegpear through a reaction. This random walking property
eroded by reactions of particles from outside with particles inmakes the incoming particle have more chance to contact the
the material, because such evolution can be the key procepsotruded part of the surface than the flat part. This nonlo-
for diverse phenomena such as electrolytic polishing, corroeality from the random-walk-like noise makes the fluctuation
sion, etching, stable fluid invasiga—5], chemical processes of surface follow Eq.(1) and make DLE a good model for
mediated by a catalytic partic[&,7], etc. Even though vari- the stable Laplacian front and for other eroding surfd@és
ous theoretical scenari$8,8] for growing surfaces such as  Although DLE is a good model for a sort of eroding sur-
the Kardar-Parisi-Zhan@KPZ) equation9], conserved KPZ faces, it is restricted to the limited applicability. If the incom-
equation[10-13, linear growth equation14], and growth ing particle is attractively biased to the material, the eroding
models with quenched disordgt5-17 can be used to ana- surface follows ballistic erosiofil9], which is based on a
lyze eroding surfaces such as etched Si surf§gsthese local theory. Furthermore real eroding surfaces can have
models were suggested mainly for growing or standing survarious nonlinear or hydrodynamic effecfg,3]. In this
faces. Since the erosion processes are not merely the timework, we want to suggest an extensive and powerful model
reversed processes of growth and the eroding surfaces canrast a paradigm for the evolution of eroding surfaces. As we
simply be understood from the models for growing surfacesshall see, our model explains not only the nonlocal eroding
comprehensive models for the eroding surfaces are needeghenomena as DLE, but also the local or nonlinear KPZ-type
However, there have been only a few theoretical modelgroding phenomena by a unified scheme.
[2,3,6] suggested solely for such eroding surfaces. Among We now want to briefly explain the theoretical back-
them, one of the most important models is the diffusion-ground of our model. The space-time dependence of the den-
limited erosion(DLE), which is the time-reversed process of sity ¢(x,t) of the random walkers in DLE or DLD follows

the diffusion-limited depositioiDLD) [18]. the diffusion equation¢/dt=DV2¢. In DLD the number
DLE has been proved to follow the linear evolution equa-of random walkers is always 1, because a new random
tion [2,3] walker is assumed to start only after the preceding walker

sticks to the cluster. The growth process is thus very slow

dhy(t) and the density of walkers at any time is very low, so that the

a qulhq(t)+ 7(0), @ growing process is nearly close to a steady state. From this
fact the density fieldp(x,t) of the walkers is expected to
ah(x,t satisfy the Laplace equation
(&t )=VIV2|”2h(x,t)+ n(xt), ¥) v P q

V2¢4=0, (3)
where h(t) is the Fourier component of surface height
h(x,t), and n4(t) is the Fourier component of Gaussian with the following boundary conditionp=1 at the starting
white noise 7(x,t) with (74(t))=0 and (74(t) 7q (1)) place of a walker an@(x,t)=0 on the cluster. This obser-
=Ady o(t—t'). In DLE a particle starting far from the vation explains why the dielectric-breakdown mod@BM)
material undergoes a random walk before it touches the mg20] with a tuned parameter makes nearly the same ramified
cluster as the DLD cluster. In DBM the Laplace equatidn
with the specified boundary condition is first numerically
*Email address: ykim@khu.ac.kr solved. Then the selection probability of a growth site is
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assigned to be proportional [¥ ¢|*, where|V ¢| is propor- O y,0=1
tional to the particle flux to the site. Next choose a growth
site based on the probability assignment and make the site
belong to the cluster. The exponentin DBM was intro- V=0
duced to describe the relation between the local field and the

growth probability. The structure of clusters as well as the /
fractal dimensiord; of the DBM model withk=1 has been i 5, =) , ~
shown to be nearly the same as that of DLD. However, DBM Yimax
is more powerful than DLD because of the physically impor-
tant parametek. « is a relevant parameter from the point of  F|G. 1. The schematic diagram for the unit evolution process in
view thatd; varies as< varies. From this fact DBM can be a the time-reversed dielectric-breakdown model in a 2D lattice. The
model for a more wider class of the growth processes. Thehaded sites denote the surface sites for annihilation. Bietdy,t)
case withk=0 corresponds to the case in which the growthis assigned asp(x,y,t)=0 on the occupied sites angi(X,hmayx
probability is independent of and is equal to a type of +y,,t)=1 on the liney=h,,,+y,. At the sites between the oc-
Eden mode[21] with d;=2. A similar growth mechanism cupied sites ang=hy,.,+ Yy, V2h(x,y,t)=0 holds. The annihi-
based on the gradient of density field was also used to déating probability of a surface site is determined by ES).

scribe dendrite growing problenf&2].

In this work we want to suggest a paradigm for the evo- (i) Solve the Laplace equatidi”$=0 numerically with
lution of eroding surfaces based on the time-reversed prghe boundary condition defined in stép V?¢=0 is solved
cesses of DBM. DLE2] was also a time-reversed process ofby the Gauss-Seidel over-relaxation method using the fol-
DLD [18]. However, DLE was not a marginal extension of lowing lattice version of the Laplace equation:

DLD but a decisive model for a sort of the eroding surfaces. 1

We also want to show that TDBM is not a marginal exten- k+1 _ 4k oKy k

sion of DBM but the model for the wider variety of eroding ¢ (xy)=Fxy)+ ol gl F X 1y)+ X+ 1Y)
surfaces than DLE. Even though DLE was shown to be a

model for the stable Laplacian front, TDBM with=1 is a + Oy — 1)+ dK(x,y+ 1)} = dK(x,y) |,
more clear model that faithfully reproduces the circumstance

for the derivation that the dynamical behavior of the stable (4)
Laplacian front follows Eq.1). Furthermore, TDBM also

covers a variety of the erosion processes including two exwherew is an over-relaxation parameter.

treme time-reversed random and irreversible growth models, (iii) Using the numerical solution fo#(x,y) from step
i.e., the time-reversed Eden model and the time-reversedi), the annihilation probability?(x,h(x,t)) of a particle at a
DLD (DLE) in a systematic and unified way. The unified surface siteax,h(x,t)) is determined by

way is by the variation of parameter, as« in DBM makes

Yo

the model cover from the needle crystal to the Eden model h ~Vexht)|«
[20]. TDBM is a kind of the surface evolution model with Px,h(x,1)= ' ®
both the deterministic and stochastic characters, because of XZ] [V é(x,h, )]

the numerical solution of the Laplace equation. TDBM is

also a nonlocal evolution model because of the Laplacgased on probability assignme@, a surface site is chosen.

equation. However, TDBM can also have the local nonlin-appjnilate the particle at the chosen site. Then go back to
earity by the variation of the parameter For smallx, the  gtep(j).

model shows the nonlinear effects, so that it follows the non-  The numerical calculations start from the flat surface
linear equation such as the KPZ equati@®]. This nonlin- h(x,t=0)=y,. We sety,=20. All the data forw are ob-
earity could also be related to the nonlinear effects from thggined by averaging over more than 100 independent runs,
relatively large attractive bias for the incoming particles inynere W is the root mean square fluctuations of surface
DLE [2]. heights{h(x,t)}.

Il. MODEL IIl. RESULTS

We now explain TDBM on a two-dimensionalD) We first discuss results for TDBM witk=1. The depen-
square lattice in detail. TDBM on a higher-dimensional hy-dence ofW for k=1 on the Monte Carlo timéis shown in
percubic lattice can easily be obtained from the 2D definithe inset of Fig. 2. Lateral sizes of the sample weére
tion. The evolution algorithm in TDBM has the following =32,64,128,256,512,1024. Solid curves in the inset show
three stepgsee Fig. 1 that eachW(L,t) fits very well to the analytic result from the

(i) Setp(x,y,t)=0 at the sites occupied by the material linear equation(1) [2,3],
particles and sep(X,y=hpaxtYp.t) =1, whereh,,.,is the

I I I I I — 4t
ma>_<|m_al surface height a_ryq) is a preassgned distance. '_I'he W2=W2 +C! In| 1—ex —W2 4 f(t/L),
periodic boundary condition is imposed in the lateral direc- L
tion. (6)
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FIG. 2. Plot of W? of TDBM with k=1 for the samples of
various lateral sizesL(s). The inset shows the plot of the raw data
of W2 against loggt and the solid curves in the inset show thiet
for the differentL satisfies relatior{6) well. The main plot shows
that the plot ofW2—W? for the differentL against logy(t/L) col-
lapses well to one curve based on the scaling relat@nwith

z=1.

whereW,,=W(L,t=«) andC is a constant. The main plot
of Fig. 2 showsW(L,t) for variousL andt collapses well to
one curve that represents the scaling plot based or@xq.
Normally the dynamic exponeiztis defined through the re-
lationt.=L? wheret, is the characteristic time or relaxation
time t. of the given dynamical behavior. Therefore, the re-
sults in Fig. 2 show that the dynamical behavior for 1 is
that withz=1. The results in Fig. 2 also mean that TDBM
with k=1 follows Eq. (1) very well as DLE. This also

means that the dynamic scaling property of DLE is the same™

as that of TDBM withk=1 as the property of DLD is the
same as that of DBM.

For the relevancy test of paramete; we also study
TDBM with k# 1. We first show for what values af W still
follows Eq.(6) or the model follows Eq(1). In Fig. 3,Win
casesk=0.5 and«=2.0 is shown to satisfy the scaling prop-
erty (6) well. As may be noticed from Fig. 3, it is confirmed
that W of the model with the range 05xk=<2 satisfies the
scaling property(6) well. This means that the nonlocality of
the Laplace equatiofB) is still dominant for 0.5s k<2 and
TDBM has the same scaling property as that with 1.

Another interesting case is in the limi—0. When «

=0, the annihilating probabilities on the surface sites be-

come independent of field(x,t). This case becomes the
time-reversed process of an Eden mo&R1]. The time-
reversed EdefiTR-Eden model(i.e., TDBM with k=0) is
exactly identical to the original Eden model if all the occu-

pied (vacanj sites in the TR-Eden model are mapped to the

vacant (occupied sites. We thus expect thaV/ for k=0
satisfies the usual scaling relation
W=L“f(t/L? (7)

with the KPZ exponents, i.e., roughness exponentl/2,
growth exponent3=1/3, and dynamic exponert= o/
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FIG. 3. Plot of W2—W?2 for the differentL in the cases«
=0.5 andx=2.0 (insed. The plot showsW? for both cases col-
lapses well to one curve based on the scaling relat@®nwith z
=1 as in Fig. 2.

=3/2 on a 1D substratg8]. We confirm this expectation
numerically. This result physically means thatin TDBM
can induce a nonlinear term such as the KPZ t&¥im|? if «
becomes small. To see the range«ah which KPZ behavior
is dominant, we study TDBM with smak. We display the
scaling behavior of TDBM withk=0.01 in Fig. 4, in which
we can clearly see the KPZ behavior witf+ 0.48 and ex-
ponentB=0.33. However, we find that/ does not show the
KPZ behavior fork>0.02. For 0.03 «=<0.4 we confirm
that W shows the dynamic scaling behavior as in Ef), but
exponentsr andB decrease from KPZ values agncreases.
The typical algebraic behavior of the model with 008
=0.4 is that shown in Fig. 5. In Fig. 5 we show that the
dynamical behavior of the model with=0.1 satisfies the
same scaling behavior as in E{/) with «=0.3 and g
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FIG. 4. The dynamical behavior of TDBM witlx=0.01 (or
very smallx). The main plot shows the early time behavioMgbr
W for t<L? The solid line shows that the data fit well to the
relationW=1t#(8=0.33). The inset shows thal¥ in the saturation
regime(or t>L%) satisfies the relatiovV=_L*(«=0.48) well. This
result shows that TDBM with a very small has the KPZ nonlin-
earity as the TR-Eden model when=0.
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0.5 thermore the scaling behavior with=1 exists in the rather
k=0.1 broad range ok, 0.5=«=<2, where the nonlocality of the
04l Laplace equation is still the important factor to decide the

scaling property of TDBM. For smalk (or k<0.4), W
shows the normal dynamical scaling behavior as in &g.
with varying @ andz. For the KPZ-like nonlinear behavior as
in the TR-Eden model witlk =0, « must become very small
(or k=0.02). For the models with large (or k>2.5), the
=030 surface shows no roughening behavior.
We now want to add two final comments. One is on the

crossover behavior from a regime to another whevaries.

12 16 20 24 The crossover behaviors we found are not sharp, but broad.

0.0 ‘ log, L Because we did not analyze the finite size effects using a
0 04 08 12 16 20 sound theory, we cannot argue that the broad crossover
log ¢ comes from either the intrinsic character of the model or the

finite size effects. This is partly due to the relatively long
FIG. 5. The dynamical behavior of TDBM witk=0.1. The  computing time to solve the Laplace equation. In the original

main plot shows the early time behavior\for Wfor t<L* The  ppM model[20] the existence of the several regimes of the
solid line shows that the data fit well to the relatit=t*(8  odel was shown, but the crossover behavior was not dis-
=0.18). The inset shows that/ in the saturation regiméor t ;g5 either. The reason for that is also believed to come
> %) satisfies the relatiow/=L*(a= 0.30) well. This result shows from the same computing time problem.
that the scaling behavior of TDBM with a moderately smalk the The second comment is on the KPZ nonlinearity. As dis-
\S/:[S:Sa;f?(:;eife?e values ot and 5 decrease from the KPZ cussed previously, nonlinearity becomes important whken

becomes very small or the nonlocal behavior of the model

~0.18. The results in Figs. 4 and 5 mean that TDBM with pecomes smeared out. Another way to make such localness

. . . : . is to give the incoming particle a drift velocity to the material
<
«=0.4 shows the scaling behavior as in kq).with varying in DLE or to make the particle undergo ballistic motion.
a and B unlessk becomes very small o¢<0.02.

. According to a theoretical analysig] for the drift velocity
If x—e, we can expect that the nonlocality of the effects on the Laplacian front, the bias can make the KPZ

Laplace equation makes the annihilating probability at thenonlinearity. In contrast, the scaling behavior of the eroding
protruded part of the surface enormogsly large and the_ SUSurface was shown to follow the Edwards-Wilkinson behav-
face bgcomeshunroughenedr.] e cok:]ﬂrr]m that models with o ity 72 [8,23] when the incoming particle in DLE
=2.5 do not show any roughening behavior. undergoes a biased random walk to the mat¢tig]. It may
be thus very interesting to study the algebraic behavior of
IV. SUMMARY AND DISCUSSION TDBM more exactly in future studies.

In summary we have introduced a dynamical model for
the eroding surfaces based on the nonlocality of the Laplace
equation. This model naturally explains the dynamic scaling This work was supported by the Korean Research Foun-
behavior of the so-called Laplacian front wher=1. Fur-  dation through Grant No. KRF-2001-015-DP0120.
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